(Terra, Aqua) MODIS Geolocation Status

NASA MODIS Characterization Support Team (MCST) Geometric Calibration Group

Guoqing (Gary) Lin, SSAI/GSFC Code 619
Robert E. Wolfe, NASA/GSFC Code 619
Ping Zhang, Bin Tan, SSAI/GSFC Code 619 James C. Tilton, NASA/GSFC Code 606
John Dellomo, GST/GSFC Code 619

NASA MODIS-VIIRS Science Team Meeting
Calibration Workshop
College Park, MD
11/18/2019

Outline

- Geolocation performance for MODIS on Terra and Aqua
- Overall performance
- Trends \& details
- Scan-to-scan underlaps \& on-orbit focal length
- Future work + a question to the users
- Conclusions

MODIS sensors on Terra \& Aqua

$$
\begin{gathered}
\text { 2/24/2000 re- } \\
\text { processing }
\end{gathered}
$$

Terra Re-\&Forward-Processing

Overall Geolocation performance

Residuals	Terra C6	Aqua C6	Terra C6.1	Aqua C6.1	N20 VIIRS C2
Track mean	1m	3 m	0 m	1 m	-1 m
Scan mean	0 m	2 m	0 m	0 m	2 m
Track RMSE	43 m	46 m	43 m	46 m	55 m
Scan RMSE	45 m	54 m	45 m	53 m	49 m
Data-days	7121 (19.5 yrs)	6310 (17.3 yrs)	7125 (19.5 yrs)	6310 (17.3 yrs)	669 (1.8 yrs)
Missing days	61	10	59	10	3
Daily matched GCPs w/ B 1/I1	258	222	258	222	193

- Nadir equivalent accuracy (RMSE = Root Mean Square Error)
- Mostly within 20% band B1 HSI (250 m) = 50 m @ nadir (75 m for VIIRS I1);
- Within 10% for HKM bands and 5\% for KM bands
- Band-to-band mis-registration to other bands adds bias to RMSE : RMSE $=\sqrt{\sigma^{2}+\mu^{2}}$
- Other features for MODIS geolocation
- Aqua uses definitive ephemeris data $\rightarrow 27$ hour latency (Terra uses TDRSS-based on-board ephemeris)
- Aqua C6.1 corrected pointing variations (most of them) caused by AMSR_E stop go slow - full stop activities \rightarrow new trend in annual cycle

Terra trend and update details

Terra C6.1 long-term trend (uncorrected)

Actual Terra C6.1 residuals

C6.1 RMSE Track: 43 m Scan: 45 m , nadir equivalent

Actual Terra C6 residuals

C6 RMSE Track: 43 m Scan: 45 m , nadir equivalent

Aqua trend and update details

Aqua C6.1 Long-term Trend (uncorrected)

RMSE with no correction: Track: 73 m (+27 m vs C6.1) Scan: 55 m (+2 m vs C6.1)

Actual Aqua C6.1 residuals

C6.1 RMSE Track: 46 m , Scan: 53 m , nadir equivalent

Actual Aqua C 6 residuals

C6 RMSE Track: 46 m , Scan: 54 m , nadir equivalent

Scan-to-scan underlap w/ nominal EFL

 Overlap $=n \frac{p}{F} \boldsymbol{h}-\left[\boldsymbol{V}_{\boldsymbol{E C I}}-V_{\text {earth }} \boldsymbol{\operatorname { c o s }} \boldsymbol{i}\right] T, \quad$ if $<0 \rightarrow$ underlap

Aqua MODIS underlap off-nadir

- MODIS has underlaps around $15^{\circ} \mathrm{N}$ at nadir with limited offscan angles
- After ~2022 A-train exit a few km, underlaps will be wider

On-orbit focal length measurements

Terra MODIS EFL Deviation (\% nominal)

Aqua MODIS EFL Deviation (\% nominal)

- On-orbit measured effective focal length (EFL) varies among builds and bands.
- EFL in Terra MODIS has higher disperse among bands than that in Aqua MODIS
- A $+0.5 \%$ EFL change means +50 m change in scan-to-scan underlap where it exits.
- Bands 6,7,31 have shorter EFL, thus less underlaps for both Aqua and Terra MODIS
- Band B12 for Terra MODIS has longer EFL, thus more underlaps
- C7 re-processing will incorporate measured ${ }^{1}$ EFL

Future work (C7 is in-work!)

1) Routine monitor and LUTs update as needed
2) Add solar eclipse data field
3) Add 250 m offsets? \rightarrow more next slide
4) Refresh ground control point chip library
5) Chips are extended from 24×24 to $42 \times 42 \mathrm{~km}$
6) Error measurements are extended from $\pm 45^{\circ}$ to $\pm 55^{\circ}$)
7) Automate GEO LUT updates
8) Update DEM
9) Update LWM (year by year?)
10) Create Level-1 geolocation web
11) similar to L1B

Anything Else?
Any change in priority order above

Home " L1B Software " Level 1B Product Information and Status
L1B Section Level 1B Product Information and Status

Center of 1 km
 pierce pt

A Question to users

- Currently, 1 KM output b is weight averaged from HKM geolocation a's
- The 1KM file provides offsets for HKM scan/track/height data fields.
- How many of you use the HKM offsets?
- Do you want additional fields for QKM m offsets or an additional HKM geo file?
- The additional field (or file) will provide more accurate geolocation for QKM resolution dataset, especially over the mountainous areas

Concluding Remarks

- Geolocation performance for MODIS on Terra and Aqua is good
- mean errors for band B1 near 0 and uncertainties are $\sim 50 \mathrm{~m}$ at nadir for the missions, statistically
- C6.1 corrected for artifacts in C6 caused by LUT updates
- AMSR_E stop-go-stop activities on Aqua induced MODIS geolocation errors, which were corrected for in C6.1. C7 will correct for more.
- Scan-to-scan underlaps exist around nadir in the equator regions
- Maximal underlaps are at nadir near $15^{\circ} \mathrm{N}$, at $\sim 150 \mathrm{~m}$ for Aqua MODIS B2
- Measured band-dependent EFL values make underlaps vary among bands
- C7 will use measured EFL
- Lowering orbit by 4 km or more will increase underlaps after A-Train exit

[^0]
Backup slides:

sun angle dependent Residuals
\& C6 changes from C5

Terra Sun angle Correction

C6 results

C6.1 results

Aqua Sun angle Correction

C6 results

C6.1 results

A Question to users

- Currently, we have one 1KM geolocation file per granule
- How many of you use the geolocation fields?

- Do you want additional fields or an additional HKM geo file?

The 500 m offsets fields were added in C6+ in ~2012, see backup slides for details

C6 Changes from C5 By Robert Wolfe \& Team back in ~ 2011

C6 observation weighted terrain correction

Observation weighted terrain correction

- - Original 1km geolocation
$\square \square-500 \mathrm{~m}$ geolocation
Δ - Observation weighted geolocation
a_{1} to a_{6} and b are geocentric cartesian coordinates (x, y, z)

The first order approximation of the observation weighted point is:

$$
b=\frac{\left(a_{1}+a_{3}+a_{4}+a_{6}\right) w_{1}+\left(a_{2}+a_{5}\right) w_{2}}{4 w_{1}+2 w_{2}}
$$

where $w_{1}=1$ and $w_{2}=2$. These weights approximate the triangular time-integrated weighting function in the scan direction and the rectangular weighting function in the track direction.

Example: Terra - Middle eas \dagger

Geolocation Elevation
(black: -27m, white: 2069m)

Geolocation difference current minus obs. weighted (black: 0m, white: 52m)

New for C6: 500m geolocation (pierce point) is also available, stored as offsets from 1 km geolocation (observation weighed)

C6 Changes - Algorithm (Science)

1. Update error analysis: use C5 residuals to update long-term trend, sunangle corrections and geometric parameter biases
2. Incorporate new ancillary data
a. Improved 500 m Shuttle Radar Terrain Mission (SRTM) Digital Elevation Model data
b. Improved Land/water mask (500 m) developed by UMD
3. Compute 500 m geolocation and provide in the form of 8 -bit offsets from a bilinear-interpolation of the 1 km data
4. Enhanced 1 km terrain correction (area based)

- synergistic with 500 m geolocation, since weighted average of 500 m pixel centers is used to approximate 1 km time-integrated weighting function

5. Updated ground control points based on improved GeoCover Landsat 7 products (in conjunction with VIIRS Geolocation activity)

C6 Changes - Other Changes

6. Solar elevation correction (roll, pitch and yaw) written to geolocation product - for transfer to the Control Point Residual files
7. Added scan metadata reporting the quality and type of the ephemeris/attitude data used in the calculations
8. For some users (DB and Oceans): Added file level metadata indicating whether or not terrain correction was performed. (Terrain correction is always used in MODAPS.)
9. For DB users: Correct the setting of attitQuat when ephemeris source is "MODIS Packet". When that source is used, the attitQuat is currently set to a constant value indicating nominal orientation (roll, pitch, and yaw are all zero). attitQuat is used only in the calculation of the solar "elevation" angle correction.

[^0]: Poster: "Joint 3D-Wind Retrievals with Stereoscopic Views from MODIS and GOES" by J.L. Carr, D.L. Wu, R.E. Wolfe, H. Madani, G. Lin, B. Tan. Also paper of the same title in Remote Sens. 11, no. 18: 2100; doi:10.3390/rs11182100.

