

MODIS and VIIRS Calibration Inter-comparison Using Vicarious Approaches

MCST/VCST

Science Systems and Applications, Inc. (SSAI) NASA Goddard Space Flight Center, Greenbelt, MD 20771

MODIS and VIIRS Science Team Meeting, College Park, MD, 18-21 November 2019)

- Introduction
- Methodology
 - SNO & PICS (desert, DCC, Dome C, ocean buoys)
 - Comparison of reflectance and brightness temp (BT)
- Results
 - Terra & Aqua MODIS
 - SNPP & NOAA20 VIIRS
 - NOAA20 VIIRS & Aqua MODIS
- Summary

VIIRS and MODIS

V	IIRS RS	B	MODIS RSB			
Band	CW	BW	Band	CW	BW	
	(nm)			(nm)		
M1	412	20	B8	412	15	
M2	445	18	B9	443	10	
M3	488	20	B10	488	10	
M4	555	20	B4	555	20	
M5	672	20	B1	645	50	
M6	746	15	B15	748	10	
M7	865	39	B2	858	35	
M8	1240	20	B5	1240	20	
M9	1378	15	B26	1375	30	
M10	1610	60	B6	1640	24	
M11	2250	50	B7	2130	50	
11	640	80	B1	645	50	
12	865	39	B2	858	35	
13	1610	60	B6	1640	24	

NOAA-20/SNPP VIIRS

- Scanning radiometer
- \bullet 22 bands between 0.4 and 12 μm
- Afternoon polar orbit
- Swath distance of 3000 km
- Nadir resolutions: 0.375, 0.750 km
- Launched Nov 18, 2017 & Oct 28, 2011
- Aggregation, dual-gain

Terra/Aqua MODIS

- Scanning radiometer
- 36 bands between 0.4 and 14 μm
- Morning/afternoon polar orbits
- Swath distance of 2330 km
- Nadir resolutions: 0.25, 0.5, 1.0 km
- Launched Dec 18, 1999 & May 4, 2002

Relative Spectral Response (RSR)

 For RSB inter-comparison, RSR correction is necessary between NOAA20 and SNPP VIIRS and between VIIRS and MODIS.

• Correction is based on historic SCIAMACHY hyper-spectral measurements over typical surfaces (ocean, desert, snow and clouds), provided by the European Space Agency.

For TEB inter-comparison, high quality RSR correction can be achieved based on IASI and CrIS using SNO

SNO (Simultaneous Nadir Overpasses)

• Both RSB & TEB

Pseudo Invariant Calibration Sites (PICS) over Desert

- Typical target area of 20 x 20 km
- Excellent radiometric stability for RSB
- Repeatable orbits (every 16 days) maintain constant viewing angles to each site
- Need site-dependent BRDF correction (Roujean et al. 1992) to reduce seasonal fluctuations.

Pseudo Invariant Calibration Sites (PICS) over DCC

- Variable locations over tropical region
- Brightest EV target with excellent radiometric stability
- Abundant but need monthly PDFs to derive the mean and mode
- Band-dependent BRDF correction to reduce seasonal fluctuations.
- Saturation for some MODIS RSB

VIIRS M1 (0.41 um), nadir

Pseudo Invariant Calibration_BSites (PICS) over Dome C

- Typical target area of 20 x 20 km
- Excellent radiometric stability and less atmospheric influence
- RSB data available in Dome C summer
- Large residual after BRDF correction
- Near-surface AWS available for TEB

SNO and Dome C (ocean buoys) for TEB

• For SNO, a temperature difference, ΔT , is used by subtracting the simulated *T* using IASI & CrIs

• For Dome C or ocean buoy sites, a temperature difference, ΔT , is determined by subtracting the measured coincident *T* at site

10

MODIS and VIIRS Inter-Comparison for RSB

11

- Sensor inter-comparison is based on vicarious approaches (SNO, Desert, no RSR correction)
- SNO approach based on double difference relative to reference sensor (Aqua MODIS or SNPP VIIRS)
- PICS approach based on site-specific BRDF (MODIS or VIIRS)

Close F factors for I2 between SIPS and IDPS

MODIS and VIIRS Inter-Comparison for TEB

- Sensor Inter-comparison is based a double difference in ΔT
- For TEB, the differences are dependent on radiance level

	RSB (%)					TEB (K)						
Method	B1	B2	B3	B4	B8	B9	B12	B20	B29	B31	B32	B35
SNO	-1.1	-0.7	2.2	-0.8	0.5	1.0	-1.4	0.11	-0.03	0.10	0.11	0.20
Desert	-0.7	0.8	0.9	-0.2	0.1	-0.4						
Dome C	-0.8	0.6	0.8	-0.1				0.96	0.24	0.21	0.26	-0.14
Ocean								0.11	-0.08	-0.09	0.00	1.36

*Results are provided in percentage difference (Terra – Aqua) (%) for RSB and in Kelvin (K) for TEB, mainly L1B data after 2012. RSR correction in SNO is based on IASI for TEB and no RSR correction is applied for RSB

NOAA20 and SNPP VIIRS TEB Inter-Comparison

	TEB (K)								
Method	M13	M14	M15	M16	15				
SNO	-0.12		-0.02	-0.10	-0.10				
Dome C	0.15	-0.23	-0.70	-0.64					
Ocean	-0.01	-0.60	-0.11	0.07					

*Results are provided in percentage difference (NOAA20 – SNPP) in Kelvin (K) for TEB RSR correction is based on CrIs/IASI for TEB in SNO

	RSB (%)									
Method	M1 B8	M2 B9	M4 B4	M7 B2	1 B1	12 B2				
SNO	-2.6 ± 1.3	-3.5 ± 1.1	-2.6 ± 0.5	-3.1 ± 0.9	-2.8 ± 0.6	-3.1 ± 0.9				
Desert	-4.8 ± 0.7	-5.7 ± 0.6	-2.5 ± 0.9	-0.7 ± 0.5	-3.5 ± 0.6	-0.8 ± 0.5				
Dome C	-4.6 ± 0.6		-1.6 ± 2.3	-0.4 ± 1.8	-1.9 ± 2.1	-0.9 ± 1.9				

*Results are provided in percentage difference (NOAA20 – Aqua) (%) for RSB RSR correction is based on SCIAMACHY for RSB

- This study provides assessment of MODIS and VIIRS calibration intercomparison for both RSB and TEB using various vicarious approaches (SNO, desert, Dome C and ocean buoys)
- For VIS/NIR bands, Terra and Aqua MODIS are consistent within 1.5%. In the case between NOAA-20/SNPP and Aqua, Aqua is between NOAA-20 and SNPP, and NOAA-20 is 1.0~3.0% lower depending on wavelength. For SNPP, additional differences up to 3.0% exist between IDPS and SIPS L1B product.
- For atmospheric window bands, agreement among Terra/Aqua MODIS and SNPP VIIRS is within 0.10 K (typical scenes). Small negative biases (~0.10K) are observed for NOAA20 compared with SNPP using IASI or CrIS.