GSFC CALIBRATION SUMMARY REPORT
NASA 48-INCH INTEGRATING HEMISPHERE SOURCE
Code 920.1 Office of Standards and Calibrations Calibration Technicians: John Cooper and Reginald Galimore

1. Introduction

During the period of November 15 through 25, 1991, a NASA 48-inch diameter. integrating hemisphere source and support equipment were sent to Johnson Space Center in Houston, Texas as part of a calibration effort for a FIRE Project mission based at Ellington field. Technicians involved in the calibration were Reginald Galimore and John Cooper of Hughes STX, contracting for The Office of Standards and Calibrations (Code 920.1).

The hemisphere was used as a source for several pre-flight calibrations of the ER-2 mounted MAS (MODIS Aircraft Simulator). Since the hemisphere could not be tilted to accommodate the downward-looking MAS instrument, a 45° angle mirror from Ames was used to direct light from the hemisphere into the MAS entrance aperture. The spectral transmittance of the mirror was later determined after the mission, when the mirror was shipped to the Office of Standarde and Calibrations to be characterized.

A radiance calibration of the hemisphere was done at GSFC before shipping to establish a baseline for the FIRE mission. Five additional measurements were made on three dates during the mission. This was done to identify changes caused by stresses of transportation, to gather a significant amount of data for statistical analysis, and to ascertain the stability of the system under changing humidity conditions. Variations about the mean were fourd of 1 to 2 percent at the 1 sigma level in and near the visible, to approximately 4 percent in the near-infrared. Radiance values shown in this report result from an average of the five measurements taken at Houston, filtered to remove noise spikes.

2. Equipment and Procedures

An Optronic 746 Automated Spectroradiometer System was used to transfer the calibrations of two standard lamps (designated F227 and F269) to the 12.7 cm aperture of the hemisphere. The Optronic Labs standard lamps were operated at a current of 8.0 amps . The hemisphere was operated at 6.5 amps with all twelve lamps on for the spectral radiance measurements. Three types of detector/grating combinations were used in the system: a silicon detector with a grating blazed at 750 nm , a cooled germanium detector with a grating blazed at 1600 nm , and a cooled lead sulfide detector with a 2500 nm blazed grating. Messurements were made at form intervals over the waveleneth region of 400 m to 2300 nm to cover calibrations for MAS channels 2 through 6.

Lamp level ratios were taken using the silicon / 750rm grating combination only $t 850 \mathrm{~nm}$, and turning lamps off one at a time from twelve lamps to one.
Because lamp level ratios are probably wavelength dependent, the ratios shown in this report may not apply for wavelengths greater than 1000 nm . Lamp levels 2 and 4 are approximately 2% off from normal ratios, reflectine the difficulties of the hemisphere's power supply to hold at 6.5 amps for lower lamp levels. Since the hemisphere's power supply showed evidence of damage in transit to Houston, that is likely the cause of the instability. It is recommended that calibrations of the MAS instrument at lower lamp levels (particularly levels 1 to 4) be treated with an additional $+-2 \%$ error bar. (More lamp level experiments will be conducted at GSFC in the coming weeks.)

3. Cidculations

Radiance values were calculated from irradiance with this formula:

$$
L_{\lambda}=\left(\Omega, \mathrm{K}, \mathrm{~K}=(\mathrm{a} / \mathrm{b})^{2} / \pi \mathrm{F}\right.
$$

Where L is radiance in $u W / \mathrm{cm}^{2} \mathrm{sr} \mathrm{nm}$. I is irradiance of the source, and K is a. calibration constant. F is the fractional amount of light which reaches the aperture of the 746 spectrometer, and is given by the formula:

$$
F=\left(Z-34 \Gamma\left(Z^{2}-4\right) Y a\right) / 2 X=a / c, Y=c b, Z=1+\left(1+X^{2}\right) Y^{2}
$$

Where a is the radius in centimeters of the 746 entrance aperture, b is the radius of the hemisphere's aperture, and c is the distance between both apertures.

Radiance values for the hemisphere were then filtered against a Planck furction which was normalized to the average of the radiance data at 1300 nm .

Calculated spectral radiance for the hemisphere before and after shipment to JSC are eiven in Table 1. Averaged filtered values for JSC and estimates of precision at each wavelength are given in Table 2 . Figure 1 shows a corresponding plot of the average radiance of the hemisphere. Table 3 contains calibration dates and environmental conditions, as well as lamp level ratios taken at JSC.

Location/Run()>	GSPC1	JSC1	JSC2	JSC3	JSC4	JSC5	GSPC2
Wavelength	11/7/91	11/16/91	11/20/91	11/20/91	11/22/91	11/22/91	12/26/91
400nm	1.34	1.39	1.18	1.31	1.39	1.43	1.42
450 ng	3.24	2.43	2.27	2.32	2.31	2.39	3.29
500nn	6.00	6.36	5.86	5.95	5.77	5.84	6.00
550 ng	9.21	9.54	8.94	9.09	8.88	8.94	9.13
600 nin	12.32	13.03	12.20	12.46	12.66	12.81	12.15
650ne	15.43	15.98	15.17	15.59	15.61	15.57	15.17
700nn	17.87	18.58	17.65	18.12	18.13	18.16	17.65
750nc	19.83	20.54	19.76	20.26	20.22	20.22	19.64
800 nc	21.29	21.67	21.47	21.98	21.82	21.82	22.03
850 nc	22.12	22.85	22.44	22.99	22.77	22.84	22.88
900 nm	22.50	23.35	22.80	21.83	23.21	23.30	22.96
950 nc	22.09	23.00	22.82	22.23	21.59	21.63	22.99
10000	21.86	23.12	22.78	23.08	23.92	23.45	22.98
10500.	21.67	22.79	22.52	22.72	23.19	23.00	22.58
1100na	20.82	21.83	21.72	22.03	22.01	21.90	21.59
1150n	19.84	20.70	20.61	20.72	20.91	20.79	20.53
1200n	18.90	19.91	19.59	19.78	19.91	19.79	19.56
1250nd	17.95	18.79	18.72	18.90	18.99	19.02	18.71
1300no	16.88	17.65	17.69	17.83	17.86	17.84	17.55
1350n	15.33	15.69	15.92	16.03	16.05	16.02	15.89
1400n	13.68	13.86	14.10	14.44	14.31	14.31	14.05
1450ng	12.71	13.16	12.98	13.29	13.57	13.44	12.97
1500ng	12.28	12.53	12.48	12.65	12.91	12.80	12.51
155008	11.52	12.06	11.71	11.68	12.51	12.34	11.86
1600nu	11.04	11.67	11.51	11.62	10.51	10.88	11.34
1650nn	10.28	10.80	10.56	10.80	9.86	10.18	10.52
1700nc	9.38	9.94	9.65	9.82	9.28	9.15	9.30
1750nc	8.42	9.14	8.90	8.94	8.14	8.28	8.78
1800nc	7.68	8.22	8.16	8.17	7.62	7.73	8.09
1850nct	6.70	7.28	7.47	7.17	6.77	6.76	7.13
1900nd	5.37	5.45	5.23	5.70	5.15	5.55	5.58
1950n	5.15	5.30	4.43	5.46	5.13	5.28	5.08
2000n	4.83	5.19	5.01	5.52	5.26	5.14	5.11
2050na	4.73	5.18	4.92	4.89	4.90	5.01	4.70
2100na	4.30	4.37	4.47	4.54	4.51	4.46	4.42
2150 nc	3.91	4.76	4.27	4.13	3.92	4.13	4.10
2200na	3.46	3.76	3.95	3.96	3.71	3.93	3.96
2250nE	3.36	3.64	3.63	3.70	3.50	3.66	3.31
2300n	2.91	3.12	2.79	3.08	2.79	3.05	2.92
2350n		2.74	2.63	2.58	2.75	2.81	2.50
24000n		2.52	2.34	2.51	2.22	2.44	2.34

Hemisphexe Radiance in [uUノ(stex ume mm)]

Waveleneth	Average Filtered Radiance at JSC	1 Sigma Precision of JSC runs
400an	1.34	6.78
450n	3.08	4.4*
500 mm	5.96	3.5\%
550nm	9.08	2.7\%
600na	12.63	2.3\%
650an	15.58	1.6\%
700ns	18.13	1.6\%
750am	20.20	1.2\%
800na	21.75	0.81
850 ng	22.78	0.8\%
900na	23.20	$0.8 x$
950 nm	23.28	1.4\%
1000n	23.27	1.7\%
1050n	22.84	1.0\%
1100n	21.90	0.5\%
1150 nm	20.75	0.5\%
1200 n	19.80	0.6x
1250n	18.88	0.6\%
1300 na	17.78	0.54
1350n	15.94	0.8\%
1400ng	14.20	1.4\%
1450n	13.29	1.6%
1500nm	12.68	1.3\%
1550n	12.06	2.78
1600 nc	11.24	4.1\%
1650nm	10.44	3.5\%
1700n	9.57	3.2\%
1750ng	8.68	4.5\%
1800na	7.98	3.2\%
1850n	7.09	4.08
1900n	5.42	3.78
1950nı	5.12	7.1%
2000ng	5.23	3.28
2050na	4.98	2.28
2100n	4.47	1.3\%
2150na	4.24	6.7\%
2200nt	3.86	2.78
2250nn	3.62	1.9\%
2300no	2.97	4.9\%
2350n!	2.70	3.2x
2400na	2.41	4.6x

Location/Run! :	GSPCl	JSCl	JSC2	JSC3	JSC4	JSC5	GSPC2
Date:	7-Kov	16-N07	20-Hov	20-Hov	22-Nov	22-Nor	26-Dec
Temperature:	24 c	26 c	24 c	24 c	24 c	24 c	21c
Hunidity:	34\%	70\%	34%	33%	45\%	45\%	32\%
Lamp Standard:	f227	1269	f227	1269	f269	f269	f269
Si detector cut on:	400na	400na	400 nm	400nm	400ad	4000n	400ng
Ge detector cut on:	10000m	800nis	900 nm	900 nm	1000ar	100000	800ng
PbS detector cut on:	1600 nm	1600ng	1600 nm	1600ns	1600ns	1600 nc	1600ng
Distance from source:	32.4cm	32.1 cm	32.20	32.2 cs	$32.20{ }^{\text {E }}$	32.2 cm	33.1 cm
746 aperture radius: $\mathrm{a}=$	1.3 cm						
source aperture radius: b =	12.7 cm	12.7cm	12.7 cm	12.7 cm	12.7co	12.7 cm	12.7cm
source distance: $c=$	32.4 cm	32.1 c	32.2 cm	32.2 cm	32.2cm	32.2 cm	33.100
$X=a / c: \quad X=$	0.0392	0.0396	0.0394	0.0394	0.0394	0.0394	0.0384
$Y=c / b: \quad Y=$	2.5496	2.5276	2.5354	2.5354	2.5354	2.5354	2.6063
$Z=1+\left(1+\chi^{\wedge} 2\right)+Y^{\wedge} 2: \quad Z=$	7.5105	7.3986	7.4384	7.4384	7.4384	7.4384	7.8028
View Pactor: $\quad P=$	0.0013	0.0014	0.0013	0.0013	0.0013	0.0013	0.0013
Calibration Constant: $\mathbb{I}=$	2.3902	2.3546	2.3673	2.3673	2.3673	2.3673	2.1833

11/20/91 Hewisphere Ratios of Lamp Levels

	Output	Ratio to	Ideal	Percent
Lamps On	R 850n	12 La	Ratio	0.083
1	0.544	0.084	0.167	0.59%
2	1.059	0.163	0.250	-2.10%
3	1.620	0.250	0.333	-0.15%
4	2.110	0.325	0.417	-2.47%
5	2.680	0.413	0.500	-0.89%
6	3.230	0.498	0.583	-0.46%
7	3.760	0.579	0.667	-0.68%
8	4.280	0.659	0.750	-1.08%
9	4.865	0.750	0.833	-0.05%
10	5.410	0.834	0.917	0.03%
11	5.920	0.912	1.000	-0.49%
12	6.490	1.000		0.00%

