MCST Presentation on Cross Track Calibration Calibration Working Group

MODIS Science Team

from MCST (MODIS Characterization Support Team

John L. Barker, Head

301/286-9498 or GSFCmail: JBarker Code 925 - Sensor Development and Characterization Branch NASA / Goddard Space Flight Center, Greenbelt, Maryland 20771 FAX: (301) 286-9200

Presented by: Joann M. K. Harnden 301/286-4133 or GSFCmail: JHarnden Code 925 - Sensor Development and Characterization Branch

> Contributions by Harold Geller, Janie Nall (301)286-9412 or (301)982-3700 GSFCmail:BGrant, JNall, Research and Data Systems, Inc. 7855 Walker Drive, Greenbelt, MD, 20770 Fax: (301)286-9200 or (301)982-3749

1630 Tuesday, 14 April 1992

Goddard Space Flight Center Building 8, Auditorium Greenbelt, Maryland

Page-1

Overview

of

MCST Presentation to Calibration Working Group on the MODIS Cross Track Calibration

Context of the Problem

Definition of the Problem

At what level of uniform or non-uniform contamination will the radiometry of the MODIS bands be significantly affected?

Solutions to the Problem

If there is a significant Problem, what are the alternative approaches to dealing with it?

Instrument-Based Monitoring/Correction

Comparisons to Aircraft-Based Observations of Common Targets Time Series Analysis of MODIS Imagery over the same Target Yawing the Spacecraft to Acquire Along-Track Imagery

Context of the Problem

At what level of uniform or non-uniform contamination will the radiometry of the MODIS bands be significantly affected?

Assumptions

The maximum contamination of the scan mirror is 19 angstroms of carbon.
19 A of C causes an 8% loss in mirror reflectance in the 700-900 nm region.
The maximum non-uniformity in contamination is 10%, or 2 A of C.
10% variation in contaminant thickness causes a 10% change in reflectance .
Scan mirror reflectance will vary form 89% to 90% across the mirror.

If any contamination is uniform on the scan mirror,

then the current on-board calibration system will correct for it, and therefore uniform contamination is only significant if it sufficiently darkens the mirror to reduce the system sensitivity below the required SNR, in which case, monitoring cannot solve the problem

Non-Uniform Scan Mirror Contamination Critical required MODIS instrument performance specifications In-Orbit Reflectance Calibration Accuracy of 2% Relative to the Sun Band 14 (681 nm) Required SNR of 1087, implies a precision requirement of 0.1 % across the entire scan

Definition of the Problem

At what level of uniform or non-uniform contamination will the radiometry of the MODIS bands be significantly affected?

A precision requirement of 0.1 % across the entire scan implies a need to correct for any non-uniformity in the contamination of the scan mirror to an accuracy of 0.1%, which further implies a need to measure the variation to perhaps a factor of two better, namely to an accuracy of 0.05%.

Measurement of scan mirror contamination must be made with sufficient accuracy to detect non-unifomities in contamination that would lead to a variation in its reflectance of 0.1%. A Question Regarding Uniformity of Deposition

Assuming a spatially uniform influx of contaminants, is it necessary also to assume that the velocity of the contaminants is fast relative to the spin rate of the mirror in order to get uniform deposition on the mirror?

Potential Solutions to the Problem

If there is a significant problem, what are the alternative approaches to dealing with it? **Time Series Analysis of MODIS Imagery over the same Target**

Implied Requirements

Image Processing Geometrically Rectified Resampled Pixels

Target Characteristics Large Area Homogeneous Lambertian

Expected Accuracy of this Methodology

5 to 20%

Potential Solutions to the Problem

If there is a significant problem, what are the alternative approaches to dealing with it? Yawing the Spacecraft to Acquire Along-Track Imagery

Expected Accuracy of this Methodology

2 to 5%

Highly desirable for cross-calibration of bidirectional reflectance measurements with MISR