3.0 Instrument Key Features, Requirements and Performance Summaries

Outline

- 3.1 Reference configuration charts
- 3.2 Requirements and Performance Summary Charts
- 3.3 Calibration temperature tanges
- 3.4 Scan mirror reflectivity vs AOI
- 3.5 OBC blackbody performance
- 3.6 Predicted Lsat's and Tsat's
- 3.7 ADC Non-linearity and ECAL test results
- 3.8 ECAL test results

Reference Configuration Charts

The MODIS ProtoFlight Model (PFM)

Principal Scan Angles Mapped to Scan Mirror Angles of Incidence

Principal Scan Angles

Angles of Incidence

Key Calibration Angles

From: MODIS Solar Reflection Band Calibration Algorithm 0/10/00							
(See also: G. Godden email to Waluschka, et al. 10/20/06							
and SBRS PL3095-	M00211H. by	Jim Bell 2	/18/96)				
		T					
	Scan Angle	AOI					
Solar Diffuser			AOVORO	(000 0)			
start	182.25	50.875		(360-SA_ev-2	2*38)/2		
mid point	183.5	50.25					
end	184.75	49.625	$101_{00} = 30 +$	5A_0V/2	+		
delta	2.5	-1.25	SA AV - 2/AC				
SRCA			0n_0v - 2(AC	<u></u>			
start	207.297	38 3515					
mid point	207.5	38 25					
end	207.703	38,1485					
delta	0,406	-0 203					
OBC BB		0.200					
start	230	27					
mid point	230.65	26 675					
end	231.3	26.35					
delta	1.3	-0.65			<u></u>		
Space View Port		0.00		· · · · · · · · · · · · · _ = ~ - ~ - ~ - ~ - ~ - ~ - ~ - ~ - ~ - ~			
start	260.9	11.55					
mid point	261.575	11,2125					
end	262.25	10.875		·····			
delta	1.35	-0.675					
BCS in MCC (T/V)							
start	-45.675	15,1625	Note: BCS Anal	bacad an ma			
mid point	- 4 5	15.5	Scan angle in MC	C and a dalla	minal -45 degree		
end	-44.325	15.8375	of 1.35 degrees		ican angle		
delta	1.35	0.675	(same delta as f	cooresponding	to 50 trames		
Earth View			Joanno donta as	or the space v	view Port)		
start	- 5 5	10.5					
mid point (nadir)	0	38					
end	55	65.5					
delta	110	55					
SIS100 in MCC							
start	?	?					
mid point	4 5	60.5					
end	?	?					
delta	?	?					

MODIS Focal Plane Layouts

Calibration Methodology (MODIS Thermal Vacuum Calibration Chamber)

Performance Summary Charts (AKA: "Murphy Charts")

Performance Summary Charts Overview

- Chart 1- Spectral Response Parameters
 - Band averaged center wavelengths
 - Band averaged bandwidths
- Chart 2 Radiance Levels
 - Ltyp/Typ
 - Lmax/Tmax
 - 0.3Ltyp \rightarrow 0.9Lmax
 - − T(0.3Ltyp) \rightarrow T(0.9Lmax)
- Chart 3 NEdL's, NEdT's and SNR's

		[Thermal	Bands Spectra	l Response	Parameters		· · ·
Wavel	eng	th Units (um)						
		GSFC Sp	ecification		P	FM Measured (nm)	<u> </u>	
Band N	о.	Center Wavelength	Bandwidth (nm)	Average Center	CWL Delta	Ave. Bandwidth	BW Delta	BW Delta (%)
		(CWL) [nm]	(specified)	Wavelength (CWL)	(=meas spec.)	(measured)	(=meas spec.)	
		(specified)		(measured&corrected				
20	PV	3750	180	3788.2	38.2	190.8	10.8	6%
21	PV	3959	59.4	3992.1	33.1	84.0	24.6	41%
22	PV	3959	59.4	3971.9	12.9	87.4	28.0	47%
23	PV	4050	60.8	4056.7	6.7	87.2	26.4	43%
24	PV	4465	65	4473.2	8.2	91.4	26.4	41%
25	PV	4515	67	4545.4		92.5	25.5	38%
27	PV	6715	360	6765.4	50.4	241.2	-118.8	-33%
28	P٧	7325	300	7336.7	11.7	325.4	25.4	8%
29	PV	8550	300	8540.7	-9.3	370.7	70.7	24%
30	PV	9730	300	9730.0	0.0	301.4	1.4	0%
31	PC	11030	500	11014.4	-15.6	522.0	22.0	4%
32	PC	12020	500	12028.2	8.1	524.4	24.4	5%
33	PC	13335	300	13361.2	26.2	311.5	11.5	4%
34	PC	13635	300	13679.5	44.5	327.7	27.7	9%
35	PC	13935	300	13910.8	-24.3	333.0	33.0	11%
36	PC	14235	300	14194.8	-40.2	288.0	-12.0	-4%
31 H	i PC	11030	500	11014.4	-15.6	522.0	22.0	4%
32 H	i PC	12020	500	12028.2	8.1	524.4	24.4	5%
Waya		hor Units (om 1)		1				ł
Wave	uiii	Note 4	Note 5		PF	M Measured (cm-1)		
Band N	o .	Band Center (cm-1)	Bandwidth (cm-1)	Ave Band Center (cm-1)	CWL Delta	Ave Bandwidth (cm-1)	BW Delta	İ
	•••	(specified)	(specified)	(measured &	(=meas spec.)	(measured)	(=meas spec.)	
				corrected)	· · · · · · · · · · · · · · · · · · ·			
20	PV	2666.67	128.07	2639.76	-26.91	133.00	4.93	
21	PV	2525.89	37.90	2504.93	-20.96	52.73	14.83	
22	PV	2525.89	37.90	2517.66	-8.23	55.43	17.53	
23	PV	2469.14	37.07	2465.08	-4.05	52.98	15.91	
24	PV	2239.64	32.61	2235.54	-4.10	45.69	13.09	·
25	PV	2214.84	32.87	2200.05	-14.79	44.78	11.91	
27	PV	1489.20	79.90	1478.12	-11.09	52.72	-27.17	· · · · · · · · · · · · · · · · · · ·
28	- PV	1365.19	55.94	1363.01	-2.18	60.49	4.55	1
29	- PV	1169.59	41.05	1170.86	1.27	50.85	9.80	
30	PV	1027.75	31.70	1027.75	0.00	31.84	0.14	
31	PC	900.62	91.12	a04.91	1.29	43.05	1.93	
32	PC	031.95	34.02	031.38	-0.56	30.2/	1.64	
33	PC PC	799.91	10.0/	721.02	-1,4/	17.45	0.58	· · · · · · · ·
25	PC PC	733.41	10.14	710 07	-2.39	17.01	1.37	ł
30	PC PC	717.02	10.40	710.07	1.20	14.20	1.70	
21 1	PC PC	006.62	4.01	007.01	1.99	14.30 A2 A5	-0.51	
32 H	PC	831 05	34.62	821.31	-0.56	43.00	1.93	· · ·
		031.93	54.02	031.30	-0.50	30.21	1.04	i

•

	T	hermal Banc	ls Specifi	ed and Mea	sured Radia	ince Leve	els				
				Radianc	es [W/(m2*sr*	um)]					
Band No	Band Ave. Çenter	Note 1	Note 1	Note 2	Calibration	Range	L_sat at 40	96 DN			
	Wavelength (nm)	Ltyp	Lmax_spec	Lmax_set	0.3*Ltyp	0.9*Lmax	L_sat l	.sat/Lmax			
	(per MCST)	(specified)	(specified)	(>315K)			(projected)	er SBRS			
20	PV 3788.2	0.45	1.71	1.82	0.14	1.54	1.68	1.06			
21	PV 3992.1	2.38	86.00	87.06	0.71	77.40	26.21	0.69			
23	PV 3971.9	0.67	1.89	1.93	0.20	1.70	1.97	1.06			
24	PV 4473.2	0.75	0.34	2.10	0.24	1.94	2.28	1.07			
25	PV 4545.4	0.59	0.88	2.65	0.03	0.31	2.08	7.03			
27	PV 6765.4	1.16	3.21	9.84	0.35	2.89	11.62	3.52			
28	PV 7336.7	2.18	4.46	11.11	0.65	4.01	12.14	2.74			
29	PV 8540.7	9.58	14.54	14.55	2.87	13.09	16.06	1.12			
30	PV 9730.0	3.69	6.34	12.61	1.11	5.71	23.90	2.81			
31	PC 11014.4	9.55	13.25	13.27	2.87	11.93	29.00	1.06			
33	PC 13361 2	6.94 4.52	12.10	12.09	2.68	10.89	23.33	0.99			
34	PC 13679.5	3.76	5.02	9.47	1.30	5.90	11.67	1.82			
35	PC 13910.8	3.11	4.42	8.91	0.93	4.52	11.93	2.21			
36	PC 14194.8	2.08	2.96	8.62	0.62	2.66	14.40	4.09			
31 HI	PC 11014.4	29.08	29.08	29.16	8.72	26.17	29.00	1.06			
32 HI	PC 12028.2	25.07	25.07	25.04	7.52	22.56	23.33	0.99			
·											
Band No	Band Ave. Çenter			Теп	nperatures (K)						
	Wavelength (nm)	T_typ (K)	T_max_spec	T_max_set	TØ	TQ	T_sat				
	(per MCST)	(specified)	(specified)	(>315K)	0.3Ltyp	0.9Lmax	(projected)				
20	PV <u>3788.2</u>	300	335	335	272.48	330.12	333				
21	PV 3992.1 PV 3071.0	335	500	500		491.98	429 fi	re band			
23	PV 4056.7	300	328	328	272.28	324.35	329				
24	PV 4473.2	250	264	315	272.12	324.52	329				
25	PV 4545.4	275	285	315	248.14	281.16	314				
27	PV 6765.4	240	271	315	210.73	266.64	323				
28	PV 7336.7	250	275	315	216.55	270.79	320				
29	PV 8540.7	300	324	324	247.13	317.57	330				
30	PV 9730.0	250	275	315	207.72	269.73	364				
37 1	PC 11014.4	300	324	324	235.33	315.75	399				
33 1	PC 13361 2	300	324	324	230.99	315.26	391				
34 1	PC 13679.5	250	265	315	194 77	277.60	335				
35 1	PC 13910.8	240	261	315	187.86	254 21	341				
36 1	PC 14194.8	220	238	315	174.58	232.26	371				
31 HI I	PC 11014.4	400	400	400	293.86	387.64	399 fi	re range			
32 Hi I	PC 12028.2	400	400	400	287.72	387.17	391 fi	re range			
3.74E+	08 14387.69	· · · · · · · · · · · · · · · · · · ·	Way	anumber Radi	iances (Watte/	(m)*er*em	+)]				
Band No.	Band Ave. Center	Note 6 N	Inte 6		iunces [watts/		1/1				
	Wavelength (cm-1)	Ltyp L	max_spec	Lmax set).3*Ltvp 0.0)*Lmax	L sat				
	(per MCST)	(specified) (s	specified)	(>315K)			(projected)	• • • • • • • • • • • • • • • • • • • •			
20 F	PV 2639.76	6.458E-04	2.454E-03	2.612E-03	1.937E-04	2.209E-03	2.411E-03				
21 F	PV 2504.93	3.793E-03	1.371E-01	1.387E-01	1.138E-03	1.234E-01	4.177E-02 fi	e band			
22	v 2517.66	1.057E-03	2.982E-03	3.039E-03	3.171E-04	2.684E-03	3.108E-03				
23 F	2465.08	1.300E-03	3.555E-03	3.592E-03	3.900E-04	3.199E-03	3.752E-03				
24 1	v 2235.54	3.402E-04	6.803E-04	4.893E-03	1.020E-04	6.123E-04	5.363E-03				
20 1	V 1479 10	1.219E-03	1.818E-03	5.484E-03	3.657E-04	1.636E-03	5.330E-03				
28 6	V 1963 01	1 172E-03	1.409E-02	4.503E-02	1.593E-03	1.322E-02	5.319E-02				
29 F	V 1170 96	6 988F-02	1 0615-02	1.061E-04	3.5201-03	2.161E-02	5.535E-02				
30 F	V 1027.75	3.493F-02	6 002F-02	1 1045-01	1 0485-02	9.545E-02	1.1/1E-01				
31 F	PC 907.91	1.159E-01	1.607F-01	1.610F-01	3.4765-02	1 4475-01	2.2032-01				
32 P	C 831.38	1.293E-01	1.751E-01	1.750E-01	3,880E-02	1,576F-01	3.3755-01				
33 P	C 748.44	8.069E-02	1.171E-01	1.691E-01	2.421E-02	1.054E-01	2.083E-01				
34 P	C 731.02	7.036E-02	9.394E-02	1.711E-01	2.111E-02	8.455E-02	2.232E-01	1			
35 P	C 718.87	6.018E-02	8.553E-02	1.724E-01	1.805E-02	7.698E-02	2.202E-01				
<u>36</u> P	C 704.49	4.191E-02	5.964E-02	1.737E-01	1.257E-02	5.368E-02	2.901E-01				
31 Hi P	907.91	3.528E-01	3.528E-01	3.537E-01	1.058E-01	3.175E-01	3.518E-01 fir	e range			
j∡ ni P	°u 831.38	3.627E-01	3.627E-01	3.622E-01	1.088E-01	3 264E-01	3 375E-01 fir	0 10000			

3-14

	Т		r =	Ţ	hermal Ban	ds Sensi	tivities a	nd SNRs				
Wavelength	ן עיר	nits (um)							-	и .		
Band No.		Çenter	Ltyp	NEdL	NEdL	NEdL	NEdi	NEdT (K)	NEdT (K)	SNR@I hrs -		CNDQUAR
		Wavelength (nm) (per MCST)	W/(m2-sr-um) (specified)	W/(m2-sr-um) (specified)	W/(m2-sr-um)	(%of Ltyp)	(%of Ltyp)	(specified)	(from meas.	Ltyp/NEdL	Ltyp/NEdL	meas./spec
	2 0	3788.2	0.45	0.000957	0.0005	0.21%	0 11%	0.05	NEUL) 0.026	(specified)	(measured)	% 101.1
:	2 1	3992.1	2.38	0.015000	0.0117	0.63%	0.49%	2 00	0.020	4/0.2	900.0	191.4
	2 2	3971.9	0.67	0.001900	0.0008	0.28%	0.12%	0.07	0.131	352.6	203.4	128.2
	23	4056.7	0.79	0.002170	0.0008	0.27%	0.10%	0.07	0.026	364 1	037.5	237.5
1	24	4473.2	0.17	0.002180	0.0012	1.28%	0.71%	0.25	0 137	78.0	1/1 7	191 6
2	2 5	4545.4	0.59	0.006200	0.0013	1.05%	0.22%	0.25	0.052	0.0	141.7	101.0
:	27	6765.4	1.16	0.010800	0.0046	0.93%	0.40%	0.25	0.002	107.4	453.0	470.9
1	28	7336.7	2.18	0.017200	0.0034	0.79%	0.16%	0.28	0.050	126.7	6/1 2	234.7 505 9
	29	8540.7	9.58	0.008990	0.0036	0.09%	0.04%	0.05	0.020	1065.6	2661.1	240.7
1	3 0	9730.0	3.69	0.021900	0.0083	0.59%	0.22%	0.25	0.025	168.5	2001.1	249.7
:	3 1	11014.4	9.55	0.007010	0.0034	0.07%	0.04%	0.05	0.024	1362.3	2808 8	203.0
3	3 2	12028.2	8.94	0.006060	0.0049	0.07%	0.05%	0.05	0.040	1475.2	1824 5	123.6
3	3 3	13361.2	4.52	0.018300	0.0100	0.40%	0.22%	0.25	0.137	247.0	452.0	183.0
3	34	13679.5	3.76	0.016100	0.0126	0.43%	0.34%	0.25	0.196	233.5	298.4	127.7
:	3 5	13910.8	3.11	0.014100	0.0141	0.45%	0.45%	0.25	0.249	220.6	220.4	100.0
3	36	14194.8	2.08	0.015400	0.0195	0.74%	0.94%	0.35	0.442	135.1	106 7	78 9
1 Hi		11014.4	29.08	0.247000		0.85%		1.00		117.7	100.7	10.5
2 Hi		12028.2	25.07	0.198000		0.79%		1.00		126.6		
	-									120.0		
	;											
	ĺ						-					
					Wavenumber Units	(cm-1); (W/(m2*sr*cm-1)]	· · · · · · · · · · · · · · · · · · ·				
	I				Note 4	Note 6	Note 6				··· .	1
	1			Band No.	Band Center(cm-1)	Ltvp	NEdL	NEdi		· · · · · · · · ·		-
					(per MCST)	(specified)	(specified)	(measured)			· · · ·	• • • • •
				20	2639.76	0.000646	1.37E-06	7.18E-07				
				21	2504.93	0.003793	2.39E-05	1.86E-05				
				22	2517.66	0.001057	3.00E-06	1.26E-06				• •
		-		23	2465.08	0.001300	3.57E-06	1.32E-06			•	
				24	2235.54	0.000340	4.36E-06	2.40E-06				-
				25	2200.05	0.001219	1 28E-05	2.69E-06		· ·		
				27	1478.12	0.005309	4.94E-05	2.11E-05			· · · · ·	
	Ţ			28	1363.01	0.011734	9 26E-05	1.835-05			-	
				29	1170.86	0.069880	6.56E-05	2 63E-05			· · ·	
	1			30	1027.75	0.034934	2 07E-04	7 86E-05	ļ			
				31	907.91	0.115857	8.50E-05	4.12E-05				
	1			32	831.38	0,129341	8.77E-05	7.095-05		1		
				33	748 44	0.080692	3 27E-04	1 795-04		ł		
				34	731 02	0.070361	3 01E-04	2 36F-04				н н. н.
	:			35	718.87	0.060181	2.73E-04	2.735-04		1		
	•			36	704 49	0.041910	3 10E-04	3 93E-04				
	r	1		31 Hi	907.91	0.352787	3.00F-02	0.002-04				
	1			32 Hi	021.20	0.060704	0.000 00			1		

Thermal Bands Radiometric Calibration Requirements

						Allowed	Allowed	Goal:	Allowed
	Center	Band				Radiometric	Radiometric	Radiometric	Radiometric
Band	Wavelength	Width	NEdT	Typical	Tmax	Uncertainty at	Uncertainty	Uncertainty at	Uncertainty at
Number	(nm)	(nm)	<u>(K)</u>	(K)	(K)	0.3 Ltyp (%)	at Ltyp (%)	Ltyp (%)	0.9 Lmax (%)
20	3750	180.0	0.05	300	335	1.75	0.75	0.50	1.75
2 1	3959	59.4	2.00	335	500		10.0		
2 2	3959	59.4	0.07	300	328	2.0	1.0		2.0
23	4050	60.8	0.07	300	328	2.0	1.0		2.0
24	4465	65.0	0.25	250	264	2.0	1.0	· · · · · · · · · · · · · · · · · · ·	2.0
2 5	4515	67.0	0.25	275	285	2.0	1.0		2.0
27	6715	360.0	0.25	240	271	2.0	1.0		2.0
28	7325	300.0	0.28	250	275	2.0	1.0		2.0
29	8550	300.0	0.05	300	324	2.0	1.0		2.0
30	9730	300.0	0.25	250	275	2.0	1.0		2.0
31	11030	500.0	0.05	300	324	1.5	0.5	0.25	1.5
31hi	11030	500.0	1.00	400	400		10.0		
32	12020	500.0	0.05	300	324	1.5	0.5	0.25	1.5
31hi	12030	500.0	1.00	400	400		10.0		
33	13335	300.0	0.25	260	285	2.0	1.0		2.0
34	13635	300.0	0.25	250	268	2.0	1.0		2.0
35	13935	300.0	0.25	240	261	2.0	1.0		2.0
36	14235	300.0	0.35	220	238	2.0	1.0		2.0
		Band	ds 21, 31	hi and 32	hi are Fir	e Detection and M	leasurement Ban	ds	

PRELIMINARY Radiance Uncertainty Estimates at 0.3 Ltypical

(not all contributors are independent; perturbation analysis required)

		Padiance and Temperature Uncertainties at 0.3 Ltypical														
Band Number	20	21	22	23	24	25	27	28	29	30	31	32	33	34	35	36
Radiance Error Due to																
OBC Temperature Error (%) (dT=50 mK)	0.26	0.20	0.24	0.24	0.31	0.26	0.24	0.21	0.14	0.17	0.12	0.11	0.13	0.14	0.15	0.17
Radiance Error Due to Center Wavelength Error	0.35	0.30	0 33	0 33	0.35	0 3 2	0.25	0.23	0.17	0 1 8	0.14	0.13	0.13	0.14	0.14	0 15
Radiance Error Due to OBC Emissivity Error	0.60	0.60	0.60	0.70	0.75	0.75	0.80	0.70	0.70	0.15	0.80	0.80	0.55	0.35	0.35	0.15
Radiance Error Due to Scan Mirror Relative Reflectance Error	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Single Measurement Noise (1/SNR) %	0.21	0.63	0.28	0.27	1.28	1.05	0.93	0.79	0.09	0.59	0.07	0.07	0.40	0.43	0.45	0.74
Radiance Error Due to ADC Non-linearity (%) @ DN=2	0.66	3.71	0.52	0.51	2.71	0.78	1.76	0.98	0.30	0.10	0.52	0.44	0.49	0.61	0.73	1.34
Radiance Error Due to Fitting Error (%)	0.75	4.00	0.50	0.50	3.00	1.00	1.00	0.30	0.20	0.50	0.20	0.20	0.20	0.50	0.20	0.50
RSS Radiance Error (%)	1.36	5.56	1.17	1.22	4.36	1.92	2.44	1.58	0.96	0.97	1.11	1.08	1.01	1.10	1.09	1.71
Eff. Temp. Error (K)	0.30	1.65	0.28	0.31	0.87	0.44	0.64	0.50	0.51	0.41	0.75	0.80	0.63	0.65	0.60	0.81
Eff. Temp. Error/NEdT	6.39	8.82	4.14	4.44	3.40	1.83	2.62	2.01	10.27	1.64	15.13	15.90	2.51	2.58	2.40	2.31
T@0.3 Ltyp (K)	272	300	272	272	228	248	211	217	247	208	235	231	202	195	188	175

PRELIMINARY Radiance Uncertainty Estimates at Ltypical

(not all contributors are independent; perturbation analysis required)

					Radiand	ce and	Temper	rature	Uncerta	ainties	at Lty	pical				
Band Number	20	21	22	23	24	25	27	28	29	30	31	32	33	34	35	36
Radiance Error Due to																
OBC Temperature Error																
(%) (dT=50 mK)	0.21	0.16	0.20	0.20	0.26	0.21	0.19	0.16	0.09	0.12	0.07	0.07	0.08	0.09	0.09	0.11
Radiance Error Due to																
Center Wavelength Error																
(d / =0.025%)	0.32	0.27	0.30	0.30	0.32	0.29	0.22	0.20	0.14	0.15	0.11	0.10	0.10	0.11	0.11	0.11
Radiance Error Due to																
OBC Emissivity Error	0.60	0.60	0.60	0.70	0.75	0.75	0.80	0.70	0.70	0.15	0.80	0.80	0.55	0.35	0.35	0.15
Radiance Error Due to																
Scan Mirror Relative																
Reflectance Error	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Single Measurement																
Noise (1/SNR) %	0.21	0.63	0.28	0.27	1.28	1.05	0.93	0.79	0.09	0.59	0.07	0.07	0.40	0.43	0.45	0.74
Radiance Error Due to																
ADC Non-linearity (%)																
@ DN=2	0.20	1.11	0.15	0.15	0.81	0.23	0.53	0.29	0.09	0.03	0.15	0.13	0.15	0.18	0.22	0.40
Radiance Error Due to																
Fitting Error (%)	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.40	0.40	0.50	0.20	0.20	0.30	0.30	0.50	0.50
RSS Radiance Error (%)	1.05	1.61	1.05	1.10	1.88	1.53	1.54	1.29	0.97	0.95	0.99	0.98	0.92	0.84	0.95	1.12
Eff. Temp. Error (K)	0.23	0.48	0.25	0.28	0.38	0.35	0.41	0.41	0.52	0.40	0.67	0.73	0.57	0.49	0.52	0.53
Temp. Error/NEdT	4.92	2.55	3.69	4.01	1.47	1.46	1.65	1.64	10.36	1.61	13.46	14.51	2.27	1.95	2.09	1.51
T@Ltyp (K)	300	335	300	300	250	275	240	250	300	250	300	300	260	250	240	220

For Band
$$B_i = 20$$
 at $\lambda c_i = 3.788$ micrometers
Ltyp_i = 0.45 Watts/(m2*sr*um) Ltyp_i = 1.70469*10⁻⁴ Watts/(m2*sr*cm-1)
Lmax_i = 1.71 Watts/(m2*sr*um) Lmax_i = 6.47782*10⁻⁴ Watts/(m2*sr*cm-1)

Ttyp_i = 300 K T@0.3Ltyp=
$$t3typ_i$$
 = 272.484 K
Tmax. = 335 K T@0.9L max= $t9max_i$ = 330.122 K

For Band
$$B_i = 21$$
 at $\lambda c_i = 3.992$ micrometers
Ltyp_i = 2.38 Watts/(m2*sr*um) Ltyp= wnLtyp_i = 9.5012*10⁻⁴ Watts/(m2*sr*cm-1)
Lmax_i = 86 Watts/(m2*sr*um) Lmax= wnLmax_i = 0.03433 Watts/(m2*sr*cm-1)

Ttyp_i = 335 K T@0.3Ltyp=
$$t_{3typ_i}$$
 = 300.067 K
Tmax_i = 500 K T@0.9Lmax= t_{9max_i} = 491.979 K

Radiance in units of Ltyp

For Band $B_i = 22$ at $\lambda c_i = 3.972$ micrometers Ltyp_i = 0.67 Watts/(m2*sr*um) Ltyp= wnLtyp_i = 2.66117*10⁻⁴ Watts/(m2*sr*cm-1) Lmax_i = 1.89 Watts/(m2*sr*um) Lmax= wnLmax_i = 7.50689*10⁻⁴ Watts/(m2*sr*cm-1)

Ttyp_i = 300 K T@0.3Ltyp=
$$t_{3typ_i} = 272.282$$
 K
Tmax = 328 K T@0.9L max= $t_{9max} = 324.35$ K

Radiance in units of Ltyp

$r_{i,2} = 0.056$	Ltyp	$t_{i, 2} = 241.899$	K
$r_{i, 3} = 0.085$	Ltyp	$t_{i, 3} = 248.631$	к
$r_{i, 4} = 0.113$	Ltyp	$t_{i, 4} = 253.639$	к
$r_{i, 5} = 0.141$	Ltyp	$t_{i, 5} = 257.665$	к
$r_{i, 6} = 0.169$	Ltyp	$t_{i, 6} = 261.051$	к

i := 3

For Band $B_i = 23$ at $\lambda c_i = 4.057$ micrometers

$Ltyp_i = 0.79$	Watts/(m2*sr*um)	Ltyp=	$wnLtyp_i = 3.20479 \cdot 10^{-4}$	Watts/(m2*sr*cm-1)
$Lmax_i = 2.16$	Watts/(m2*sr*um)	Lmax=	$wnLmax_i = 8.76247 \cdot 10^{-4}$	Watts/(m2*sr*cm-1)

$$Ttyp_i = 300 \text{ K}$$
 $T@0.3Ltyp= t3typ_i = 272.121 \text{ K}$
 $Tmax_i = 328 \text{ K}$ $T@0.9Lmax= t9max_i = 324.519 \text{ K}$

$$\begin{aligned} r_{i, 2} &= 0.055 & Ltyp & t_{i, 2} &= 240.686 & K \\ r_{i, 3} &= 0.082 & Ltyp & t_{i, 3} &= 247.496 & K \\ r_{i, 4} &= 0.109 & Ltyp & t_{i, 4} &= 252.567 & K \\ r_{i, 5} &= 0.137 & Ltyp & t_{i, 5} &= 256.645 & K \\ r_{i, 6} &= 0.164 & Ltyp & t_{i, 6} &= 260.076 & K \end{aligned}$$

For Band
$$B_i = 24$$
 at $\lambda c_i = 4.473$ micrometers
Ltyp_i = 0.17 Watts/(m2*sr*um) Ltyp= wnLtyp_i = 7.60444*10⁻⁵Watts/(m2*sr*cm-1) Lmax_i = 0.34 Watts/(m2*sr*um) Lmax= wnLmax_i = 1.52089*10⁻⁴Watts/(m2*sr*cm-1)

$$Ttyp_i = 250 \text{ K}$$
 $T@0.3Ltyp = t3typ_i = 228.424 \text{ K}$
 $Tmax_i = 264 \text{ K}$ $T@0.9Lmax = t9max_i = 261.728 \text{ K}$

Radiance in units of Ltyp

.

For Band
$$B_i = 25$$
 at $\lambda c_i = 4.545$ micrometers
Ltyp_i = 0.59 Watts/(m2*sr*um) Ltyp= wnLtyp_i = 2.68179*10⁻⁴Watts/(m2*sr*cm-1)
Lmax_i = 0.88 Watts/(m2*sr*um) Lmax= wnLmax_i = 3.99995*10⁻⁴Watts/(m2*sr*cm-1)

Ttyp_i = 275 K T@0.3Ltyp=
$$t3typ_i$$
 = 248.134 K
Tmax_i = 285 K T@0.9Lmax= $t9max_i$ = 281.159 K

For Band $B_i = 25$ at $\lambda c_i = 4.545$ micrometers

 $Ltyp_i = 0.59$ Watts/(m2*sr*um) $Ltyp = wnLtyp_i = 2.68179 \cdot 10^{-4}$ Watts/(m2*sr*cm-1) $Lmax_i = 0.88$ Watts/(m2*sr*um) $Lmax = wnLmax_i = 3.99995 \cdot 10^{-4}$ Watts/(m2*sr*cm-1)

Ttyp_i = 275 K T@0.3Ltyp=
$$t_{3typ_i} = 248.134$$
 K
Tmax_i = 285 K T@0.9Lmax= $t_{3typ_i} = 281.159$ K

$$r_{i, 2} = 0.03$$
Ltyp $t_{i, 2} = 210.114$ K $r_{i, 3} = 0.045$ Ltyp $t_{i, 3} = 215.926$ K $r_{i, 4} = 0.06$ Ltyp $t_{i, 4} = 220.248$ K $r_{i, 5} = 0.075$ Ltyp $t_{i, 5} = 223.722$ K $r_{i, 6} = 0.089$ Ltyp $t_{i, 6} = 226.643$ K

For Band $B_i = 27$ at $\lambda c_i = 6.765$ micrometers

$Ltyp_i = 1.16$	Watts/(m2*sr*um)	Ltyp=	$wnLtyp_i = 7.84786 \cdot 10^{-4}$	Watts/(m2*sr*cm-1)
$Lmax_i = 3.21$	Watts/(m2*sr*um)	Lmax=	$wnLmax_i = 0.00217$	Watts/(m2*sr*cm-1)

$$Ttyp_i = 240 \text{ K} T@0.3Ltyp= t3typ_i = 210.727 \text{ K}$$
$$Tmax_i = 271 \text{ K} T@0.9Lmax= t9max_i = 266.638 \text{ K}$$

Radiance in units of Ltyp

$$Ltyp_i = 2.18 \quad Watts/(m2^*sr^*um) \quad Ltyp= wnLtyp_i = 0.0016 \quad Watts/(m2^*sr^*cm-1) \\ Lmax_i = 4.46 \quad Watts/(m2^*sr^*um) \quad Lmax= wnLmax_i = 0.00327 \quad Watts/(m2^*sr^*cm-1) \\ \end{array}$$

$$Ttyp_i = 250 \text{ K}$$
 $T@0.3Ltyp= t3typ_i = 216.552 \text{ K}$
 $Tmax_i = 275 \text{ K}$ $T@0.9Lmax= t9max_i = 270.79 \text{ K}$

For Band $B_i = 28$ at $\lambda c_i = 7.337$ micrometers

i := 8

For Band $B_i = 29$ at $\lambda c_i = 8.541$ micrometers

$Ltyp_i = 9.58$	Watts/(m2*sr*um)	Ltyp=	$wnLtyp_i = 0.00818$	Watts/(m2*sr*cm-1)
$Lmax_i = 14.54$	Watts/(m2*sr*um)	Lmax=	$wnLmax_i = 0.01242$	Watts/(m2*sr*cm-1)

$$Ttyp_i = 300 \text{ K}$$
 $T@0.3Ltyp= t3typ_i = 247.129 \text{ K}$
 $Tmax_i = 324 \text{ K}$ $T@0.9Lmax= t9max_i = 317.566 \text{ K}$

Radiance in units of Ltyp

i := 10 For Band $B_i = 30$ at $\lambda c_i = 9.73$ micrometers Ltyp_i = 3.69 Watts/(m2*sr*um) Ltyp= wnLtyp_i = 0.00359 Watts/(m2*sr*cm-1) Lmax_i = 6.34 Watts/(m2*sr*um) Lmax= wnLmax_i = 0.00617 Watts/(m2*sr*cm-1)

Ttyp_i = 250 K T@0.3Ltyp=
$$t_{3}typ_{i} = 207.723$$
 K
Tmax_i = 275 K T@0.9Lmax= $t_{9}max_{i} = 269.732$ K

For Band $B_i = 31$ at $\lambda c_i = 11.014$ micrometers

$Ltyp_i = 9.55$	Watts/(m2*sr*um)	Ltyp=	$wnLtyp_i = 0.01052$	Watts/(m2*sr*cm-1)
$Lmax_i = 13.25$	Watts/(m2*sr*um)	Lmax=	$wnLmax_i = 0.01459$	Watts/(m2*sr*cm-1)

$$Ttyp_i = 300 \text{ K}$$
 $T@0.3Ltyp= t3typ_i = 235.328 \text{ K}$
 $Tmax_i = 324 \text{ K}$ $T@0.9Lmax= t9max_i = 315.754 \text{ K}$

Radiance in units of Ltyp

$$\begin{array}{ll} r_{i,\,\,2} = \,0.028 & Ltyp & t_{i,\,\,2} = \,164.768 & {\sf K} \\ r_{i,\,\,3} = \,0.042 & Ltyp & t_{i,\,\,3} = \,173.645 & {\sf K} \\ r_{i,\,\,4} = \,0.055 & Ltyp & t_{i,\,\,4} = \,180.545 & {\sf K} \\ r_{i,\,\,5} = \,0.069 & Ltyp & t_{i,\,\,5} = \,186.286 & {\sf K} \\ r_{i,\,\,6} = \,0.083 & Ltyp & t_{i,\,\,6} = \,191.254 & {\sf K} \\ \end{array}$$

For Band $B_i = 32$ at $\lambda c_i = 12.028$ micrometers

$Ltyp_i = 8.94$	Watts/(m2*sr*um)	Ltyp=	$wnLtyp_i = 0.01075$	Watts/(m2*sr*cm-1)
$Lmax_i = 12.1$	Watts/(m2*sr*um)	Lmax=	$wnLmax_i = 0.01455$	Watts/(m2*sr*cm-1)

٦

$$Ttyp_i = 300 \text{ K}$$
 $T@0.3Ltyp= t3typ_i = 230.994 \text{ K}$
 $Tmax_i = 324 \text{ K}$ $T@0.9Lmax= t9max_i = 315.265 \text{ K}$

For Band $B_i = 33$ at $\lambda c_i = 13.361$ micrometers

$Ltyp_i = 4.52$	Watts/(m2*sr*um)	$Ltyp = wnLtyp_i = 0.00604$	Watts/(m2*sr*cm-1)
$Lmax_i = 6.56$	Watts/(m2*sr*um)	$Lmax = wnLmax_i = 0.00876$	Watts/(m2*sr*cm-1)

Ttyp_i = 260 K T@0.3Ltyp=
$$t3typ_i$$
 = 201.878 K
Tmax_i = 285 K T@0.9Lmax= $t9max_i$ = 277.604 K

Radiance in units of Ltyp

For Band $B_i = 34$ at $\lambda c_i = 13.68$ micrometers

$Ltyp_i = 3.76$	Watts/(m2*sr*um)	Ltyp=	$wnLtyp_i = 0.00514$	Watts/(m2*sr*cm-1)
$Lmax_i = 5.02$	Watts/(m2*sr*um)	Lmax=	$wnLmax_i = 0.00687$	Watts/(m2*sr*cm-1)

$$Ttyp_i = 250 \text{ K}$$
 $T@0.3Ltyp = t3typ_i = 194.769 \text{ K}$
 $Tmax_i = 268 \text{ K}$ $T@0.9Lmax = t9max_i = 261.247 \text{ K}$

Radiance in units of Ltyp

.

S-33

For Band $B_i = 35$ at $\lambda c_i = 13.911$ micrometers

$Ltyp_i = 3.11$	Watts/(m2*sr*um)	$Ltyp = wnLtyp_i = 0.00433$	Watts/(m2*sr*cm-1)
$Lmax_i = 4.42$	Watts/(m2*sr*um)	$Lmax = wnLmax_i = 0.00615$	Watts/(m2*sr*cm-1)

Ttyp_i = 240 K T@0.3Ltyp=
$$t_3typ_i$$
 = 187.86 K
Tmax_i = 261 K T@0.9Lmax= t_9max_i = 254.208 K

For Band $B_i = 36$ at $\lambda c_i = 14.195$ micrometers

$Ltyp_i = 2.08$	Watts/(m2*sr*um)	Ltyp=	$wnLtyp_i = 0.00295$	Watts/(m2*sr*cm-1)
$Lmax_i = 2.96$	Watts/(m2*sr*um)	Lmax=	$wnLmax_i = 0.0042$	Watts/(m2*sr*cm-1)

$$Ttyp_i = 220 \text{ K}$$
 T@0.3Ltyp= t3typ_i = 174.584 K
Tmax_i = 238 K T@0.9Lmax= t9max_i = 232.255 K

MODIS Operational and Calibration Ranges

Vertical bars represent temperatures of 0.3Ltyp and 0.9 Lmax. Box symbols represent Tmax_spec, X symbols represent the value of Tmax_set (the higher of tMaxspec or 315K), and the diamond symbols represent the temperature of Ltyp.

Scan Mirror Reflectivity vs Angle of Incident (AOI) Model

Average of SN03 and SN04 Samples; Measurement #1

,. ,.

Scan Mirror Reflectivity Data Analysis and Fitting Procedure

- 3 of 4Lincoln Laboratory measurements selected to determine average in-band reflectivity
 - SN#4; measurement#2 data appeared anormalory.
- Average RSR weighted reflectivity determined for 19⁰, 26⁰, 38⁰, 50⁰ and 65⁰ AOIs.

$$\overline{\rho_{19}(B)} = \frac{-1\%}{\left[\rho_{19}^{\#1}(\lambda) + \rho_{19}^{\#2}(\lambda) + \rho_{19}^{\#3}(\lambda)\right]} \frac{RSR(\lambda)d\lambda}{RSR(\lambda)d\lambda}$$

• $\overline{\rho_{19}(B)}, \overline{\rho_{26}(B)}, \overline{\rho_{38}(B)}, \overline{\rho_{50}(B)}, \overline{\rho_{65}(B)}$ fitted to quadratic and lorentz

ScM Reflectivity Data Analysis (continue)

Quadratic Function

 $\rho(B, AOI) = a_0^B + a_1^B \quad AOI + a_2^B \quad AOI^2$

where AOI = Angle-of-Incident [Degree]

• Lorentz Function

$$\rho(B, AOI) = \rho_0 \frac{(HW)^E}{(2 AOI)^E + (HW)^E}$$

where the three parameters, ₀,HW,E, are band dependent

• For Fitting: $\rho_{s-pol}(AOI = 0) = 0.99$ for all bands $\rho_{p-pol}(AOI = 0) = \rho_{s-pol}(AOI = 0)$ $\overline{\rho}(AOI = 0) = 0.99$

		Measu	red Band Av	eraged Refle	Qua	Lorentz	Coef	icients				
Band	AOI=0 deg	AOI=19 deg	AOI=26 deg	AOI=38 deg	AOI=50 de	AOI=65 deg	a0	a1	a2	rho_0	E	HW
20	0.99	0.99060	0.98799	0.99026	0.98820	0.97665	9.89E-01	2.30E-04	-6.08E-06	0.991	6.6	260.
21	0.99	0.99156	0.98892	0.99102	0.98858	0.97739	9.89E-01	2.66E-04	-6.55E-06	0.991	6.6	260.
_ 22	0.99	0.99143	0.98884	0.99096	0.98866	0.97757	9.89E-01	2.59E-04	-6.39E-06	0.991	6.5	260.
23	0.99	0.99176	0.98885	0.99095	0.98876	0.97708	9.89E-01	2.74E-04	-6.73E-06	0.991	5.5	290.
24	0.99	0.99126	0.98814	0.99000	0.98830	0.97581	9.89E-01	2.52E-04	-6.62E-06	0.991	5.5	290.
25	0.99	0.99142	0.98809	0.99004	0.98808	0.97581	9.89E-01	2.50E-04	-6.63E-06	0.988	5.0	280.
27	0.99	0.98779	0.98559	0.98568	0.98185	0.96663	9.89E-01	1.61E-04	-7.29E-06	0.987	5.2	275.
28	0.99	0.98783	0.98558	0.98583	0.98212	0.96722	9.89E-01	1.57E-04	-7.09E-06	0.984	3.2	270.
29	0.99	0.98358	0.97703	0.96647	0.94617	0.89728	9.88E-01	4.19E-04	-2.72E-05	0.983	3.3	275.
30	0.99	0.98382	0.97787	0.96816	0.94901	0.90414	9.88E-01	3.77E-04	-2.51E-05	0.987	3.2	330.
31	0.99	0.98657	0.98334	0.97716	0.96533	0.93393	9.89E-01	3.43E-04	-1.77E-05	0.986	3.2	335.
32	0.99	0.98634	0.98291	0.97659	0.96490	0.93345	9.89E-01	3.22E-04	-1.75E-05	0.987	2.7	320.
33	0.99	0.98384	0.97758	0.96592	0.94621	0.89987	9.88E-01	3.64E-04	-2.60E-05	0.988	2.6	320.
34	0.99	0.98317	0.97685	0.96475	0.94280	0.89473	9.88E-01	3.73E-04	-2.73E-05	0.987	2.6	315.
35	0.99	0.98339	0.97640	0.96343	0.94088	0.89057	9.88E-01	3.93E-04	-2.86E-05	0.987	2.6	315.
36	0.99	0.98250	0.97626	0.96271	0.94125	0.88715	9.88E-01	4.43E-04	-2.99E-05	0.987	2.6	315.

.

Lorentz and Quadratic Fitting to the Lincoln Lab Data for B20-23

Residual Errors of the Lorentz and Quadratic Fitting for B20-23

Residual Errors of the Lorentz and Quadratic Fitting for B24-28

Residual Errors of the Lorentz and Quadratic Fitting for B29-32

Residual Errors of the Lorentz and Quadratic Fitting for B33-36

OBC Blackbody Performance

. .

•

3-52

UAID 1455 MFI-09 Blackbody Cooldown Test Hot Plateau Channel 5

OBC Blackbody Temperature Measurement at Hot Plateau (283K)

		Heater Off			Heater On	
Thermistor #	ave_DN	σ_DN	ave_T(K)	ave_DN	σ_DN	ave_T(K)
1	2068	3.22	282.02	167	2.00	314.57
2	2022	1.95	281.99	154	1.71	314.51
3	2025	1.70	282.00	161	1.38	314.54
4	2031	1.80	281.99	160	1.79	314.49
5	2026	1.72	282.00	159	1.83	314.42
6	2024	2.61	281.99	157	2.00	314.41
7	2057	1.90	282.01	165	1.99	314.57
8	2048	2.91	282.00	163	2.21	314.53
9	2047	1.64	282.00	161	1.30	314.53
10	2025	2.87	282.04	155	2.54	314.50
11	2018	1.79	282.00	156	2.18	314.42
12	2049	2.05	282.00	165	2.61	314.43
	Averages	2.18	282.00	Averages	1.96	314.49
		Stdev (T) =	0.021		Stdev (T) =	0.078

Radiance Error Due to Uncertainty in BCS Temperature Knowledge (T= 50 mK; =0.0%)

Band Number

The effect of 50 mK error in temperature knowledge on dL/L. Saw tooth pattern represents variation of error for temperatures between 170K (tops) and 350K (bottoms) for each band.

Predicted Lsat's and Tsat's

.

.

$$DN_{bcs} - DN_{svs} = a_0 + a_1 * L + a_2 * L^2$$

at saturation
$$4095 - DN_{svs} = a_0 + a_1 * L + a_2 * L^2$$

then
$$a_2L_{sat}^2 + a_1L_{sat} + a_0 - 4095 + DN_{svs} = 0$$

and thus
$$L_{sat} = \frac{-a_1 \pm -\sqrt{a_1^2 - 4a_2(a_0 - 4095 + \overline{DN_{svs}})}}{2a_2}$$

and

$$T_{sat} = \frac{C2}{i * \ln \frac{C1}{* \frac{5}{i} * L_{sat}} + 1}$$

where:

$$\frac{1}{DN_{svs}} = \frac{1}{30} \int_{j=1}^{30} DN_{svs}(j)$$

$$C1 = 3.7417749 * 10^{8}$$

$$C2 = 1.438769 * 10^{4}$$

Maximum Measurable Radiance Estimates (Nominal Plateau)

LSATS	by Ch	nan	nel foi	^r Each E	Band									
LSATs	CH_1		CH_2	CH_3	CH_4	CH_5	CH_6	CH_7	CH_8	CH_9	CH_10	Lmax-set		Band Ave
20		1.66	1.69	1.68	1.70	1.69	1.68	1.68	1.68	1.67	1.69	1.71		1.68
21	2	26.27	27.24	26.04	25.59	26.43	26.11	27.10	26.56	24.80	25.92	85.45		26.21
22		1.95	1.95	2.06	1.96	1.95	1.94	1.96	1.96	1.97	1.97	1.89		1.97
23		2.39	2.27	2.27	2.27	2.27	2.27	2.26	2.26	2.24	2.28	2.16		2.28
24		2.68	2.60	2.46	2.37	2.75	3.03	2.41	2.87	2.89	2.76	2.42		2.68
25		2.63	2.55	2.59	2.59	2.56	2.60	2.57	2.59	2.55	2.59	2.57		2.58
27	1	0.56	10.83	10.44	11.14	11.28	11.53	11.79	13.00	12.66	13.00	9.71		11.62
28	1	2.33	12.27	11.92	12.02	12.14	11.93	12.27	12.20	12.28	12.06	11.08		12.14
29	1	6.13	16.08	16.21	16.05	16.17	15.98	15.97	15.81	16.19	16.01	14.55		16.06
30	2	23.73	24.71	24.06	23.59	22.68	23.47	23.81	23.94	25.28	23.69	12.61		23.90
31	3	30.12	29.70	30.07	28.84	27.61	28.08	28.79	28.24	28.50	30.08	29.09	Lmax for 31h	29.00
32	2	22.95	22.82	23.66	23.73	22.45	23.32	23.46	23.44	23.69	23.76	25.03	Lmax for 32h	23.33
33	1	0.63	11.13	11.02	10.97	11.16	10.99	10.93	11.14	11.49	17.22	9.5		11.67
34	1	1.75	12.10	11.82	11.70	11.93	12.07	12.16	12.11	11.81	11.84	9.19		11.93
35	1	1.59	11.28	11.31	11.71	11.55	11.03	11.20	11.25	11.55	11.34	8.88		11.38
36	1	4.58	15.18	3 14.47	14.96	14.43	14.18	14.35	13.55	14.00	14.27	8.58		14.40
									Lmax-set=high	ner of Lmax and	I L(t=315K)			
Lsat/Lmax-set	t											average Lsat/L	max-set	
20		0.97	0.99	0.98	0.99	0.99	0.98	0.98	0.98	0.98	0.99	0.98		
21		0.31	0.32	0.30	0.30	0.31	0.31	0.32	0.31	0.29	0.30	0.31		
22		1.03	1.03	1.09	1.04	1.03	1.03	1.04	1.04	1.04	1.04	1.04		
23		1.11	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.04	1.06	1.05		
24		1.11	1.07	1.02	0.98	1.14	1.25	1.00	1.19	1.19	1.14	1.11		
25		1.02	0.99	1.01	1.01	1.00	1.01	1.00	1.01	0.99	1.01	1.00		
27		1.09	1.12	1.08	1.15	1.16	1.19	1.21	1.34	1.30	1.34	1.20		
28		1.11	1.11	1.08	1.08	1.10	1.08	1.11	1.10	1.11	1.09	1.10		
29		1.11	1.10	1.11	1.10	1.11	1.10	1.10	1.09	1.11	1.10	1.10		
30		1.88	1.96	1.91	1.87	1.80	1.86	1.89	1.90	2.00	1.88	1.89		
31		1.04	1.02	1.03	0.99	0.95	0.97	0.99	0.97	0.98	1.03	1.00		
32		0.92	0.91	0.95	0.95	0.90	0.93	0.94	0.94	0.95	0.95	0.93		
33		1.12	1.17	1.16	1.16	1.18	1.16	1.15	1.17	1.21	1.81	1.23		
34		1.28	1.32	1.29	1.27	1.30	1.31	1.32	1.32	1.28	1.29	1.30		
35		1.30	1.27	1.27	1.32	1.30	1.24	1.26	1.27	1.30	1.28	1.28		
36		1.70	1.77	1.69	1.74	1.68	1.65	1.67	1.58	1.63	1.66	1.68		

Maximum Measurable Temperatures (Tsat's)

TSATs b	y Channel	for each	Band							
	CH_1	CH_2	CH_3	CH_4	CH_5	CH_6	CH_7	CH_8	CH_9	Ch_10
Band 20	332.26	332.88	332.66	332.92	332.76	332.64	332.66	332.60	332.48	332.75
Band 21	428.75	430.62	428.31	427.43	429.07	428.45	430.35	429.32	425.84	428.07
Band 22	328.41	328.38	330.06	328.56	328.39	328.27	328.51	328.51	328.61	328.67
Band 23	330.82	329.19	329.25	329.13	329.13	329.18	329.05	329.09	328.79	329.35
Band 24	317.87	316.85	315.23	314.09	318.68	321.78	314.54	320.07	320.20	318.74
Band 25	314.66	313.80	314.28	314.26	313.84	314.31	314.04	314.21	313.75	314.21
Band 27	318.35	319.54	317.79	320.92	321.51	322.55	323.67	328.53	327.20	328.55
Band 28	320.37	320.14	318.59	319.05	319.54	318.67	320.10	319.81	320.15	319.22
Band 29	330.54	330.31	330.84	330.22	330.67	329.91	329.88	329.22	330.75	330.03
Band 30	363.33	366.91	364.53	362.82	359.40	362.34	363.61	364.10	368.95	363.16
Band 31	403.86	402.17	403.67	398.72	393.66	395.61	398.52	396.27	397.31	403.68
Band 32	389.21	388.51	392.91	393.27	386.57	391.18	391.87	391.78	393.08	393.46
Band 33	325.58	330.00	329.04	328.63	330.30	328.80	328.26	330.13	333.13	378.14
Band 34	339.50	342.55	340.08	339.02	341.09	342.27	343.11	342.67	339.96	340.23
Band 35	341.16	338.32	338.56	342.32	340.81	335.99	337.54	338.05	340.78	338.89
Band 36	372.72	377.94	371.73	376.00	371.34	369.16	370.69	363.50	367.58	369.95
Summary	y of TSAT	Variatior	n with Ch	annels fo	r each Ba	and				
						ave_TSAT				
						(except				
	ave_TSAT	std	TSAT_min	TSAT_max	Max - min	highest ch.)	Tmax-set	aveTsat-Tm	ax-set	
Band 20	332.66	0.19	332.26	332.92	0.66	332.63	335	-2.37		
Band 21	428.62	1.39	425.84	430.62	4.78	428.40	500	-71.60	Tsat=470K pe	r SBRS
Band 22	328.64	0.51	328.27	330.06	1.79	328.48	328	0.48		
Band 23	329.30	0.55	328.79	330.82	2.03	329.13	328	1.13		
Band 24	317.80	2.59	314.09	321.78	7.68	317.36	315	2.36		
Band 25	314.14	0.28	313.75	314.66	0.90	314.08	315	-0.92		
Band 27	322.86	4.04	317.79	328.55	10.75	322.23	315	7.23		
Band 28	319.56	0.65	318.59	320.37	1.78	319.47	315	4.47		
Band 29	330.24	0.50	329.22	330.84	1.62	330.17	324	6.17		
Band 30	363.91	2.58	359.40	368.95	9.55	363.35	315	48.35		
Band 31	399.35	3.75	393.66	403.86	10.20	398.84	400	-1.16		
Band 32	391.18	2.34	386.57	393.46	6.88	390.93	400	-9.07		
Band 33	334.20	15.56	325.58	378.14	52.56	329.32	315	14.32		
Band 34	341.05	1.49	339.02	343.11	4.09	340.82	315	25.82		
Band 35	339.24	1.95	335.99	342.32	6.34	338.90	315	23.90		
Band 36	371.06	4.07	363.50	377.94	14.44	370.30	315	55.30		

Maximum Measurable Temperatures (Tsat's)

(Band 21 extrapolated from 0.03Lmax measurement; SBRS predicts 472 K from detector-level measurements)

ADC Non-linearity and ECAL Test Results

3-61

ADC Architecture

- Emissive bands use two types of ADCs placed on the Analog Conditioning Electronics (ACE) cards:
 - AD1671A: 12 Bits, 800 ns conversion time
 MWIR: 1 ACE card serving Bands 20-25
 PV-LWIR: 1 ACE card serving Bands 27-30
 - AD674A: 12 Bits, 15 μs conversion time
 PC-LWIR: 6 ACE cards for Bands 31-36
- Key Issues:
 - Linearity Data only exists for AD1671A; no data exists to verify linearity of PC-LWIR bands.

Ground Based ADC Linearity Characterization

• 16 Bit DAC used as calibrator of 12 Bit ADC. Compare with best-fit-straight-line (BFSL) across the entire data set.

Minimum 2 DAC
steps per ADC DN step
400 sample averages
per DAC step

ADC Characterization Error Estimates

Estimated Percent Radiance Error Corresponding to a 4DN Systematic Digitization Deviation. Channel = 5

ADC Characterization Error Estimates

Estimation of errors based on a polynomial representation of DN.vs.L Errors in polynomial fitting procedure not included in this estimate.

$$dn_{ev} = DN_{ev} - DN_{sv} = a_0 + a_1 L_{ev} + a_2 L_{ev}^2$$
$$\Delta dn_{ev} \approx \Delta L_{ev} \left(\frac{\delta dn_{ev}}{\delta L_{ev}}\right)$$
$$\frac{\Delta L_{ev}}{L_{ev}} \approx \frac{\Delta dn_{ev}}{a_1 L_{ev} + 2a_2 L_{ev}^2}$$

ADC Characterization Error Estimates at L_{typ}

Estimated percent error in *L* for channel 5 of each band. Estimate does not include errors associated with polynomial fit coefficients.

BAND	L _{typ}	∆DN _{signal} =1	∆DN _{signal} =2	∆DN signat=3	∆DN _{signal} =4	$\Delta L L_{spec}$	$\Delta L/L_{goal}$
20	0.45	0.099612	0.199225	0.298837	0.398449	0.75	0.5
21	2.38	0.555872	1.111745	1.667617	2.22349	10.0	10.0
22	0.67	0.077253	0.154507	0.23176	0.309014	1.0	1.0
23	0.79	0.076618	0.153236	0.229853	0.306471	1.0	1.0
	8						
25	0.59	0.117292	0.234585	0.351877	0.469169	1.0	1.0
27							
28	2.18	0.146709	0.293417	0.440126	0.586834	1.0	1.0
29	9.58	0.045389	0.090778	0.136167	0.181556	1.0	1.0
30	3.69	0.15503	0.310061	0.465091	0.620122	1.0	1.0
31	9.55	0.077244	0.154487	0.231731	0.308974	0.5	0.25
32	8.94	0.066696	0.133392	0.200089	0.266785	0.5	0.25
33	4.52	0.073171	0.146341	0.219512	0.292683	1.0	1.0
34	3.76	0.091875	0.18375	0.275625	0.3675	1.0	1.0
35	3.11	0.109102	0.218203	0.327305	0.436407	1.0	1.0
36	2.08	0.201678	0.403356	0.605034	0.806712	1.0	1.0

ADC Characterization Error Estimates at L_{max}

Estimated percent error in L for channel 5 of each band.

BAND	L _{max}	∆DN _{signal} =1	∆DN _{signal} =2	∆DN _{signal} =3	∆DN _{signal} =4
20	1.71	0.02622	0.05244	0.078659	0.104879
21	86	0.001811	0.003621	0.005432	0.007242
22	1.89	0.026919	0.053838	0.080757	0.107676
23	2.16	0.027537	0.055075	0.082612	0.110149
24	0.34	0.204645	0.40929	0.613935	0.81858
25	0.88	0.077799	0.155597	0.233396	0.311195
27	3.21	0.095515	0.19103	0.286545	0.382059
28	4.46	0.071978	0.143956	0.215933	0.287911
29	14.54	0.030314	0.060627	0.090941	0.121254
30	6.34	0.092184	0.184368	0.276552	0.368736
31	13.25	0.056628	0.113257	0.169885	0.226514
32	12.1	0.049745	0.09949	0.149235	0.198979
33	6.56	0.050478	0.100957	0.151435	0.201914
34	5.02	0.068388	0.136775	0.205163	0.273551
35	4.42	0.07627	0.152539	0.228809	0.305079
36	2.96	0.141851	0.283703	0.425554	0.567406

3-69

ADC Ground Based Look-Up Table (LUT) Corrections

3-70

- No correction planned for FAM ADCs (no data).
- Correction for SAM ADCs systematic digitization error, Δ(B,T,DN), is obtained using the deviation from a BFSL through the entire 16 Bit DAC data set:

$DN'(B,T) = DN(B,T) + \Delta(B,T,DN)$

B= Band, T= Temperature

Intermediate temperature points to be linearly interpolated.

This correction algorithm assumes Δ is reproducible over time.

• LUT Format:

Separate Tables for Cold, Nominal and Hot Operating Temperatures

ADC Characterization Summary

- 16 Bit DAC data will be used (where available) to remove fixed pattern and systematic ADC non-linearity.
- Correction lookup tables are constructed from ground based data.
- Correction algorithm assumes that the fixed pattern ADC non-linearity does not change over time, and is the same when the instrument is in orbit.

On-Board ECAL: Electronic Calibration

- Dynamic range of ADC covered in ~10 equal charge injections; one injection step per frame in space view sector.
- During ECAL cycle, PV detectors removed from circuit; PC detectors remain part of circuit.
- ECAL data collected over preset number of mirror scans (typically 2 in T/V PFM).
- Scan averaged data obtained on-board to be used to monitor gross linearity variations over time and temperature by comparing to earlier or ground based measurements.

Electronic Calibration Status and Key Issues

- Status:
 - T/V PFM data analyzed show a linear ECAL response given the 8 Bit resolution of DAC supply.
 - Typically less than 5% variation for the linear slope term over full operating temperature range of instrument.
- Key Issues:
 - Additional data at spacecraft level at Valley Forge will be requested in a new STR to compare to existing T/V data at cold, hot and 5 intermediate temperature regions.
 - Data to be obtained over ~300 mirror scans (~7.5 minutes) to increase ECAL resolution from 8 Bits to ~12 Bits by statistical analysis.
 - Relation between ECAL and radiometric transfer functions TBD.