AMSR ATBD Algorithms

Level 1C
 Ocean Parameters
 Sea Ice
 Snow Water Equivalent
 AI Chang and AI Rango
 Rainfall
 Tom Wilheit, Chris Kummerow, and Ralph Ferraro
 Land Surface Parameters

AMSR Level 1C Algorithm

- Obtains spatially consistent data sets corrected for antenna spillover and crosspolarization effects
- Footprint sizes of 58, 37, 21, 11, and 5 km for the 6.9, 10.7, 18.7/23.8, 36.5, and 89 GHz observations, respectively
- For each Level 1C observation, a set of coefficients describes the relative weights of the neighboring observations that are combined to produce the Level 1C value; the weighting coefficients are determined by the Backus-Gilbert method

AMSR Ocean Parameters

Sea surface temperature (58 km resolution; hope for 0.5 K accuracy) Near-surface wind speed (38 km resolution; expect better than 1.0 m/s accuracy) Vertically integrated water vapor (24 km resolution; expect better than 1.0 mm accuracy) Vertically integrated cloud liquid water (13 km resolution; expect better than 0.02 mm accuracy)

AMSR Sea Ice Parameters

Standard products

Sea ice concentration

(25 km resolution; better than 7% accuracy)

Sea ice temperature

(50 km resolution; 2.5 K estimated accuracy)

Snow depth on sea ice

(25 km resolution; 10 cm estimated accuracy)

- Special products
 - Sea ice motion, Arctic sea ice types, Sea ice surface classes

AMSR Snow Water Equivalent Parameter

Five-day snow water equivalent maps, gridded on a 25-km equal-area grid

Valid only under dry conditions (wet conditions will be screened out)

Estimated accuracies of 25% as long as the snow cover is at least 15 cm thick

AMSR Rainfall Parameters

Instantaneous ocean rainfall based on Bayesian inversion

Instantaneous land rainfall based on empirical relationships using groundbased radar observations

Monthly rainfall gridded into 5° latitude x 5° longitude boxes

AMSR Land Surface Parameters

Surface soil moisture (0.06 g/cm³ accuracy, 76 km resolution) Land surface temperature (2.5 K accuracy, 76 km resolution) Vegetation water content Higher-level, derived products: vertical moisture gradients in the soil vertical temperature gradients in the soil energy fluxes at the land surface

Major Divisions of the AIRS Standard-Product Algorithm

Microwave-Only First-Guess Algorithm

 Phil Rosenkranz, Dave Staelin, et al.

 First-Product Algorithm

 Mitch Goldberg, Larry McMillin, et al.

 Final-Product Algorithm

 Joel Susskind et al.

AIRS Microwave-Only Algorithm

Uses AMSU and HSB to obtain estimates of:

- surface skin temperature
- spectral surface emissivity
- water vapor profile
- cloud liquid water profile
- (eventually, cloud ice)

AIRS First-Product Algorithm

Enables a rapid derivation of the following parameters:

- spectral surface emissivity
- surface skin temperature
- temperature and moisture profiles
- Makes products available within two hours, usable operationally
- Provides initial conditions for the Final-Product Algorithm

AIRS Final-Product Algorithm

Gets refined products, more accurate than those from the Microwave-Product and First-Product Algorithms

Uses liquid water and spectral surface emissivity from the Microwave-Product Algorithm and surface skin temperature and temperature moisture profiles from the First-Product Algorithm

AIRS Final Products

Atmospheric temperature profiles

- 1 K accuracy in 1 km thick layers in the troposphere
- 1 K accuracy in 4 km thick layers in the stratosphere
- Atmospheric humidity profiles
- Total precipitable water vapor
- Sea surface temperatures
- Land surface temperatures
- Spectral surface emissivity
- Fractional cloud cover, cloud spectral infrared emissivity, and cloud-top pressure and temperature
- Total ozone column density and density in three layers of atmospheric ozone