Detector-to-Detector Residuals in MODIS Aqua calibration coefficients

Gerhard Meister¹, Ewa Kwiatkowska²

1: Futuretech Corp., 2: SAIC

Acknowledgements: MCST, OBPG

MODIS Aqua nLw 412nm, before correction:

After correction:

'Sun-yaw' or beta angle

MODIS SD Measurement Setup (Waluschka et al., 2004)

Part 1: Results from on-orbit SD measurements with ocean bands

Next slide: m1 measurements

- Provided by MCST
- Not used in calibration LUTs
- Calculated with:

m1 = BRF * cos
$$\theta$$
 * Γ * Δ / (dn* * d²_{ES})

$$\begin{split} &\Gamma = \text{vignetting function from SD screen} \\ &\Delta = \text{SD degradation measured by SDSM} \\ &dn^* = \text{measured counts minus dark current (temperature corrected)} \\ &d_{\text{ES}} = \text{distance Earth-Sun} \end{split}$$

Pattern related to beta angle:

MODIS Focal Planes

Figure 3-11. Offset of Each Band Relative to the Reference Optical Axis

Conclusions:

- True vignetting function is detector dependent (~0.5% effect)
- This detector dependence is probably band dependent (~0.2% effect, determined by position on the focal plane)
- Open question: is the detector-averaged vignetting function also band dependent ?

<u>Assumption: exponential degradation of gains (inverse of m1)</u> (plot shows normalized m1 of detector 5 as a function of time)

<u>Residuals from exponential degradation of m1, detector 5</u> (residuals fitted with 3rd order polynomial, plotted versus beta angle)

<u>Residuals from exponential degradation of m1, detectors 1,5,10</u> (residuals fitted with 3rd order polynomial, plotted versus beta angle)

Part 2: Results from on-orbit SD measurements with non-ocean bands

Vignetting function: (dashed line: MCST, solid line: OBPG)

Detector 10/1 ratio from detector-dependent VF corrects detector ratio beta angle dependence...

... but makes striping worse !

Part 3: Detector-to-Detector Residuals from Earth-View Data

Aqua detector/mirror-side dependency

- Goal: quantify Aqua detector dependency for all ocean bands including the NIR bands for earthview TOA radiances (Lt's)
- How:
 - find runs of 20 pixels along the track which meet strict flag and low chlorophyll/AOT requirements
 - for each run calculate percent differences between the Lt at mirror side 1 detector 1 and the Lt's at the other pixels in the run
 - average percent differences for all the runs found

Aqua detector/mirror-side dependency – scattering angle beginning of the scan middle of the scan end of the scan

Aqua detector/mirror-side dependency Rayleigh and aerosol radiances 412nm

Southern Hemisphere

La - solid lines (aerosols)

80

80

80

Rayleigh broken lines shifted down from original radiance (can correct for Rayleigh easily)

Aqua detector/mirror-side dependency – with Rayleigh, La and tLw correction

Aqua detector/mirror-side dependency – with Rayleigh, La and tLw correction 14 Aug 2002

no limit on dPOL

Comparison to lunar analysis of MCST (*):

MODIS Aqua nLw 412nm, before correction:

After correction:

Conclusions:

- Corrections from TOA analysis significantly reduce striping
- Corrections confirmed by lunar analysis
- Detector dependent vignetting function removes beta angle dependence in detector ratio, but increases striping
- Open question: what causes SD to introduce offsets between detectors ?