Introduction

- MODerate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for NASA's Earth Observing System (EOS).
- MODIS is onboard both Terra spacecraft (launched on December 18, 1999) and Aqua spacecraft (launched on May 4, 2002).
- MODIS's 2-sided paddle wheel scan mirror provides a -55 to +55 degree scan of the Earth covering 10 km (at nadir) along track by 2330 km along scan swath.
- MODIS has 36 spectral bands, among which 20 are reflective solar bands (RSBs) ranging from 0.41 to 2.3 microns, with spatial resolution (at nadir) of 250 m (bands 1-2), 500 m (bands 3-7) and 1000 m (bands 8-19,26).
- RSBs are calibrated on-orbit by an onboard Solar Diffuser (SD) panel, the Moon, and an onboard Spectro-Radiometric Calibration Assembly (SRCA)

RSB On-orbit Calibration Algorithms

On-orbit Calibration Algorithms

Reflectance

\[\text{Reflectance} = \frac{I_{Ch} - m_{0}}{m_{1}} \text{dB} = \frac{I_{Ch}}{m_{1}} - \text{Earth-Sun Distance} \]

Radiance

\[L_{Ch} = m_{0} \cdot I_{Ch} \cdot \text{Earth-Sun Distance} \]

SD On-orbit Calibration Schematic*

SD/SDM Calibration Algorithm

Scaling factors \(m_1 \) from SD

SD (BRF) degradation from SDSM

\[m_{SD} = \left(\frac{A_{BRF}(SDM) \cdot \text{Earth-Sun Distance}}{A_{SDM} \cdot \text{Earth-Sun Distance}} \right) \]

VIS and NIR Focal Plane Assemblies Layout*

VIS and NIR Focal Plane Assemblies Layout***

SD BRF and SD Screen VF

- Prelaunch BRF is used (validated on-orbit)
- SDS VF is derived on-orbit
- On-orbit yaws for BRF and VF:
 - One set of Aqua yaws, 6/2002
- Each set of yaws 12 (or 6) SDS open (BRF, VF)
 12 (0r 6) SDS closed (VF)

SD Degradation

Terra Out-of-band Thermal Leak Correction Example

<table>
<thead>
<tr>
<th>Time-Dependent RVS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative RVS is derived from SD, SRCA, and Moon data for Terra and from SD and Moon data for Aqua</td>
</tr>
</tbody>
</table>

Special Calibrations and Challenging Issue

- Algorithms:
 - Using a linear approach between the SWIR signals
 \[d_{SNR}\text{ (BRF)} = d_{SNR}\text{ (VF)} - m_{\text{sd}} \cdot d_{\text{Earth-Sun Distance}} \]
 - \(d_{\text{Earth-Sun Distance}} \): uncorrected Earth view signal after background subtraction
 - \(d_{\text{Earth-Sun Distance}} \): corrected Earth view signal after OOB correction
 - \(m_{\text{sd}} \): linear correction coefficient
 - \(E_{\text{Earth-Sun Distance}} \): Earth-Sun distance

RSB On-orbit Calibration Algorithms

On-Orbit Performance

Special Calibrations and Challenging Issue

- Challenging Issues:
 - \(m_1 \) shows annual oscillation for the Ocean bands
 - 0.5% for B8, 0.4% for B9, and 0.3% or less for other bands
 - This might be true since it was also observed in Moon and SRCA scaling coefficients
 - \(m_1 \) shows daily oscillation
 - The oscillation is band and detector dependent and can be as large as 0.4% for some bands
 - Accuracy of time-dependent RVS
 - Striping